Skip to main content

THEY’RE STILL THERE

The Hurdy-gurdy

Summer 1994 | Volume 10 |  Issue 1
 

“This is a replacement human hip part,” says Michael Coladonato, showing me a curved metal bar about eight inches long shaped so gracefully it looks like sculpture. “We made it of a cobalt-chrome-nickel alloy called MP35N. And these things over here hold the space shuttle together. You spend a lot of money for these. We’re the world leader in precision fasteners.”

Michael Coladonato, the supervisor of contract research for SPS Technologies, in Jenkintown, Pennsylvania, runs an in-house lab that does independent testing both for SPS’s products and for other companies as well. “Let me show you this machine we used to test our space-shuttle fasteners,” he says.

We walk through a wide, airy, immaculate room full of large, modern equipment—fatigue testers, spectrographs, even a scanning electron microscope—to an iron, steel, and brass machine from another era. “We call this the hurdy-gurdy,” he says. He’s not sure of the reason it’s called this: possibly because it works by turning a crank, makes a lot of noise, and is very old. “It’s our most powerful torsion tester,” he remarks. He rests a hand on its rounded iron shoulder. “Notice that plate on it there.”

The brass plate lists four dates for patents covering the machine, the earliest 1879, the most recent 1891. “We think it was actually built in 1906. But last week it broke this bolt for us, which holds the rocket-motor sections together on the space shuttle.” The four-hundred-dollar advanced-alloy bolt—about five inches long and surprisingly heavy—had fractured just above where it screws into a nut.

“How the hurdy-gurdy works is really very simple,” Coladonato explains. “You see these two iron arms reaching across from either end of it? You attach something between them, and this arm twists it while the other holds it still. You could twist this pen here with it, for instance.” He points to his shirt pocket. “In fact, we did some work for Mark Cross pens a few years ago. That rule across the top shows how much torque you’re applying.” The brass rule is engraved with numbers indicating inch-pounds, from zero up to 60,000. An iron truck riding on a screw along the top of the rule points down to indicate the reading.

 

“That 60,000 inch-pounds is quite a bit of torsion. The most powerful V-8 automobile engine you can buy, in a Cadillac, produces about 480 footpounds. That’s less than a tenth of this. But all this machine is, really, is an electric motor geared way down and attached to an extremely rugged base and accurate measuring device. Watch.”

We hope you enjoyed this essay.

Please support this 70-year tradition of trusted historical writing and the volunteers that sustain it with a donation to American Heritage.

Donate

Stay informed - subscribe to our newsletter.
The subscriber's email address.