Skip to main content

News/Blogs

Tue, 11/14/2017 - 15:58

In perhaps the most famous scene of any Bond film, secret agent 007 lies strapped to a table with his legs spread. Archvillain Auric Goldfinger directs an industrial laser toward Bond’s manhood, and slowly the thick red beam surgically cuts the table in half. The secret agent calmly convinces his foe to shut off the laser in the nick of time.

Tue, 10/16/2012 - 16:55

In the mid-1960s Don Bitzer, the director of the Coordinated Science Laboratory at the University of Illinois at Urbana–Champaign, was tasked with creating the first computer-based instructional system. He recognized immediately that current screen technology would support such a program. A new, brighter display was needed, one that had no flicker and boasted higher contrast than what was then available on screens using cathode ray tubes.

Tue, 10/16/2012 - 07:12

From Ducts To Dresses

THAT WAS AN EXCELLENT article on the substance that fixes anything and everything, duct tape (“Object Lessons,” by Curt Wohleber, Summer 2003). A student in my heat-transfer class last spring semester made a book bag entirely out of the tape, complete with pockets for a calculator and pencils. I found it a classic example of the innovative spirit. Here is a picture.

 

Tom Lawrence
LAFAYETTE, IND.

Tue, 10/16/2012 - 05:20

Ford’s Engines

HENRY FORD WAS INDEED A GREAT IN novator (“Henry Ford’s Big Flaw,” by John M. Staudenmaier, S.J.), but I question that those are “6000-horsepower gas-turbine engines in the powerhouse” shown on page 38 of the Fall 1994 issue. The prime movers driving the dynamos appear to be cross-compound Corliss steam engines. Gas turbines didn’t become available for industrial use until well after World War II.

 

Mon, 10/15/2012 - 16:22

During World War II, South Carolina–born Charles Townes worked on nascent microwave technology and designed radar-based bombing systems for Bell Labs. After hostilities ended, he accepted a position at Columbia University. One spring morning in 1951 he experienced a eureka moment when he realized he could generate microwaves with molecules instead of free electrons.

Fri, 10/12/2012 - 15:35

On December 23, 1947, in the Bell Telephone Laboratories at Murray Hill, New Jersey, physicists John Bardeen and Walter Brattain spoke over the world’s first transistor-amplified telephone circuit, a quarter-inch-tall device composed of a thin strip of gold foil sliced in two in order to create two metal contacts over a crystal of germanium. Their success was the culmination of eight years of research conducted alongside their team leader, 37-year old William B. Shockley, and triggered a wave of new electronics.

Fri, 10/12/2012 - 15:04

One morning in April 1938, 27-year-old DuPont chemist Roy J. Plunkett cracked open the valve of a pressurized canister containing tetrafluoroethylene (TFE) gas in preparation for an experiment. Much to his irritation, the canister that he had filled the night before appeared to be empty. His assignment had been to find a replacement for the refrigerant Freon 114, on which Frigidaire currently held a monopoly. To conduct his scheduled experiment that morning, he needed to release some TFE into a heated chamber and then spray in hydrochloric acid.

Thu, 10/11/2012 - 17:55

Disillusioned by his bitter rivalry with Thomas Edison over the invention of the incandescent lightbulb, 41-year-old Maine-born inventor Hiram Stevens Maxim sailed for England in 1881, never to return to the United States. Aware that his career in electrical engineering had ended, Maxim became consumed with creating an automatic gun, inspired by the casual remark of an American friend, who said, “Hang your chemistry and electricity! If you want to make a pile of money, invent something that will enable these Europeans to cut each other’s throats with greater facility.”

Thu, 10/11/2012 - 12:51

Just after World War II ended, Stephanie Louise Kwolek tucked her new chemistry degree from the Carnegie Institute of Technology under her arm and—because she couldn’t afford medical school—took a research job at DuPont’s textile fibers department in Buffalo. Although she faced many challenges as one of the few women in chemical research, she liked the work so much that she soon dropped her plans to become a doctor. Two decades later she would invent Kevlar, one of the world’s most versatile materials, and along with it a new branch of polymer chemistry.

Thu, 10/11/2012 - 12:40

In the late 1930s Barry Green, a research chemist at the National Cash Register Company in Dayton, began investigating how the concept of microencapsulation might have potential application in copying documents. If specks of dye could be covered with a special fusible coating, forming a microcapsule, the use of ink could prove much less messy and more efficient. Scientists had long been intrigued by the possibilities of controlling the release of an active ingredient by encapsulating it.

Wed, 10/10/2012 - 11:23

In 1933 the 68-year-old inventor Niels Christensen finally tackled a problem that had bothered him throughout his long career in hydraulics. His elegant and simple solution—the O-ring—would become such a ubiquitous part of so many technologies that it is present by the dozens in every home and car, and applied to everything from fountain pens and soap dispensers to hydraulic presses and bomb-bay doors.

Wed, 10/10/2012 - 09:56

Sometime in the 20th century, public perception of the American inventor converged with the image of a mad scientist into a wild-eyed caricature of a raving lunatic, steam pouring from his ears, hair askew, slide rules or calculators falling out of his pockets: Albert Einstein too brilliantly distracted to put on socks; Thomas Edison curled up exhausted on his desk in his lab coat and shoes; or the unforgettable " Doc" Brown muttering under his breath as he fiddled with the DeLorean's flux capacitor in the Back to the Future film trilogy. 

Wed, 10/10/2012 - 09:23

From Steam To Diesel

Having been involved in the dieselization of U.S. railroads, I found Maury Klein’s article “The Diesel Revolution” (Winter 1991) very interesting. His reference to engine men gradually coming to appreciate the vastly improved working conditions of diesel is almost an understatement. On one major road that completely dieselized, a sudden traffic surge required reactivation of a few steam locomotives.

Fri, 10/05/2012 - 16:04

At the age of 24, Polish-born mechanical engineer Tadeusz Sendzimir found himself in Shanghai, China, after escaping his homeland to avoid the draft for World War I. In 1918 he opened China’s first nail and screw factory, using jury-rigged drill presses. He spent his spare time walking along Shanghai’s canals and riverfronts, visiting machine shops and scrap iron dealers. He’d bargain in pidgin English with the shop’s assistant while the owner snoozed peacefully in the back, clutching an opium pipe.

Fri, 10/05/2012 - 15:49

Sometime in 1894, while his Great Lakes steamer W. P. Thew lay tied to a Cuyahoga River wharf in northeast Ohio, 48-year-old Capt. Richard P. Thew, failed farmer and hardware salesman, observed a railroad steam shovel take one clumsy scoop of ore after another from the heap on the wood docks and dump them into a hopper car sitting on nearby railroad tracks. He noticed that the shovel bucket’s teeth gouged the dock’s timbers and left much of the ore behind.

Wed, 10/03/2012 - 19:03

The Wrong Computer

 James E. Strothman’s article “The Ancient History of System/360” (Winter 1990) incorrectly identifies the computer about which IBM’s chairman, Thomas J. Watson, Jr., wrote his famous memo citing its design and development by “34 people including the janitor.” The computer Watson was referring to was the CDC 6600, produced by Seymour Cray at Control Data Corporation in 1965. And it was not designed to compete directly with the 360 but rather was focused on scientific computing needs.

Wed, 10/03/2012 - 17:40

By the 1870s, much of shoe manufacturing was performed by machine. One intricate operation continued to defy mechanization: lasting, or fastening the upper part of a shoe to the inner sole. Shoes took on their final appearance while being shaped by hand over a wooden model of a foot called a last, and much manipulation was required to accurately form the leather around the last, especially at the heel and toe.

Wed, 10/03/2012 - 15:29

Early in 1924, 34-year-old Edwin Armstrong returned to Columbia University, the scene 11 years earlier of his breakthrough invention of the regenerative circuit, while only a sophomore. His device had amplified radio waves a thousandfold and made radio practical. This time he had set his sights on eliminating static from radio, a problem most felt was insoluble. “Static, like the poor, will always be with us,” declared the chief engineer of AT&T.

Wed, 10/03/2012 - 15:08

In 1900 the United States Weather Bureau hired 34-year-old electrical engineer Reginald Fessenden to develop a wireless system that could distribute forecasts and relay meteorological data. The Canadian-born inventor, a protégé of Thomas Edison, former consultant for Westinghouse, and professor at Purdue and Western universities, moved his family to Spartan accommodations at the Weather Bureau station at Cobb Island, Maryland, 60 miles southeast of Washington, D.C., in the Potomac River.

Wed, 10/03/2012 - 13:31

In early 1945 Laurence Marshall contemplated the imminent financial ruin of his company. Raytheon had enjoyed a lucrative business supplying the U.S. military with magnetrons, electron tubes that generated microwaves, a key component in the nascent technology of radar and the detection of enemy airplanes. But World War II seemed likely to end soon, and with it Raytheon’s lucrative military contracts. Raytheon needed to come up with something it could sell to civilians.

We hope you enjoyed this essay.

Please support this 70-year tradition of trusted historical writing and the volunteers that sustain it with a donation to American Heritage.

Donate

Stay informed - subscribe to our newsletter.
The subscriber's email address.