Skip to main content

Radio

500 CPS Synchronous Rotary Gap transmitter at Brant Rock, Ma. Ca: 1906.
Society: IEEEMain Category: ElectricEra: 1900-1909DateCreated: 1906Blackman's PointBrant RockState: MAZip: 02050Country: USAWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:First_Wireless_Radio_Broadcast_by_Reginald_A._Fessenden,_1906Creator: Reginald A. Fessenden

On 24 December 1906, the first radio broadcast for entertainment and music was transmitted from Brant Rock, Massachusetts to the general public. This pioneering broadcast was achieved after years of development work by Reginald Aubrey Fessenden (1866-1932) who built a complete system of wireless transmission and reception using amplitude modulation (AM) of continuous electromagnetic waves. This technology was a revolutionary departure from transmission of dots and dashes widespread at the time.

YearAdded:
2008
Image Credit: Courtesy Michael Thompson (CC BY-SA 2.5)Image Caption: 500 CPS Synchronous Rotary Gap transmitter at Brant Rock, Ma. Ca: 1906.Era_date_from: 1906
First Radio Astronomical Observations Using Very Long Baseline Interferometry
Society: IEEEMain Category: ElectricEra: 1960-1969DateCreated: 1967Dominion Radio Astrophysical ObservatoryCaledenState: BCZip: V0H 1K0Country: CanadaWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:First_Radio_Astronomical_Observations_Using_Very_Long_Baseline_Interferometry

On the morning of 17 April 1967, radio astronomers used this radiotelescope at DRAO and a second one at the Algonquin Radio Observatory located 3074 km away to make the first successful radio astronomical observations using Very Long Baseline Interferometry. Today, VLBI networks span the globe, extend into space and continue to make significant contributions to both radio astronomy and geodesy.

YearAdded:
2010
Image Credit: Courtesy Flickr/bulliver (CC BY-SA 2.0)Image Caption: The Radiotelescope at DRAOEra_date_from: 1967
First Operational Use Of Wireless Telegraphy
Society: IEEEMain Category: ElectricEra: 1900-1909DateCreated: 1899-1902Telkom MuseumCapetownCountry: South AfricaWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:First_Operational_Use_Of_Wireless_Telegraphy,_1899-1902

The first use of wireless telegraphy in the field occurred during the Anglo-Boer War (1899-1902). The British Army experimented with Marconi's system and the British Navy successfully used it for communication among naval vessels in Delagoa Bay, prompting further development of Marconi's wireless telegraph system for practical uses. The Anglo-Boer War of 1899-1902 will be remembered as the last of the gentleman's wars, the war that marked the end of the Victorian era.

YearAdded:
1999
Image Credit: Courtesy Cardiff Council Flat Holm Project (CC BY 3.0)Image Caption: Post Office Engineers inspect Marconi's equipment on Flat Holm, May 1897Era_date_from: 1899
Society: IEEEMain Category: ElectricEra: 1890-1899DateCreated: 1890Institut Catholique de ParisParisZip: 75006Country: FranceWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:Discovery_of_Radioconduction_by_Edouard_Branly,_1890Creator: Branly, Edouard
The discovery of the radioconduction is a phenomenon which revolutionized the means of communication. It is at the origin of the development of the TSF (Télégraphie Sans Fil, or wireless telegraphy). As a member of the French Academy of Sciences (it gains vis-a-vis Marie Curie), Branly received international recognition. No more than about fifteen years separate the first wireless transmission across a few meters (1890) from the first transatlantic communication (Marconi, December 1901).
YearAdded:
2010
Image Credit: Courtesy WikipediaImage Caption: Edouard BranlyEra_date_from: 1890
Society: IEEEMain Category: ElectricEra: 1920-1929DateCreated: 1924Tohoku University Sendai-shiCountry: JapanWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:Directive_Short_Wave_Antenna,_1924Creator: Hidetsugu Yagi, Uda, Shintaro
Beginning in 1924, Professor Hidetsugu Yagi and his assistant, Shintaro Uda, designed and constructed a sensitive and highly-directional antenna using closely-coupled parasitic elements. The antenna, which is effective in the higher-frequency ranges, has been important for radar, television, and amateur radio. The antenna system, using a driven element with closely coupled parasitics (usually a reflector and one or more directors) for short-wave work, was first described by S. Uda, a professor at Tohuku University in Japan, in 1926, in the IEEJ (Japan). A colleague, Professor H.
YearAdded:
1995
Image Credit: Courtesy IEEEImage Caption: The Yagi-Uda directive short wave antennaEra_date_from: 1924
Society: IEEEMain Category: ElectricEra: 1930-1939DateCreated: 1930-1945Tokyo Institute of TechnologyNikahoCountry: JapanWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:Development_of_Ferrite_Materials_and_Their_Applications,_1930-1945Creator: Takei, Takeshi
Dr. Takeshi Takei, the professor at the Tokyo Institute of Technology, discovered that composite oxides containing zinc and iron have distinguished magnetic properties. In 1930, Prof. Takei submitted a paper on his work to Japanese Electro-chemical Society and also presented a paper at 57th General Meeting of American Electrochemical Society in St. Louis. That same year, Prof. Takei applied a patent for his discovery, which was granted in 1932(Japan PAT-98844). Tokyo Denki Kagaku Kogyo (now TDK Corporation) was founded in 1935 to commercialize this newly invented ferrite cores.
YearAdded:
2009
Image Credit: Courtesy Tokyo Institute of TechnologyImage Caption: A replica of the early soft-ferrite core.Era_date_from: 1930
Society: IEEEMain Category: ElectricalSub Category: CommunicationsEra: 1900-1909DateCreated: 1904General Electic CompanySchenectadyState: NYZip: 12306Country: USAWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:Alexanderson_Radio_Alternator,_1904Creator: Alexanderson, Ernst
"The Alexanderson radio alternator was a high-power, radio-frequency source which provided reliable transoceanic radiotelegraph communication during and after World War I. Ernst F.W. Alexanderson (1878-1975), a General Electric engineer, designed radio alternators with a frequency range to 100 kHz and a power capability from 2 kW to 200 kW.
YearAdded:
1992
Image Credit: Public Domain; Produced prior to 1/1/1923Image Caption: Alexanderson Radio AlternatorEra_date_from: 1904
Subscribe to Radio

We hope you enjoyed this essay.

Please support this 70-year tradition of trusted historical writing and the volunteers that sustain it with a donation to American Heritage.

Donate

Stay informed - subscribe to our newsletter.
The subscriber's email address.