Skip to main content

Satellite

First Transpacific Reception of a Television (TV) Signal via Satellite
Society: IEEEMain Category: ElectricEra: 1960-1969DateCreated: 1963Ibaraki Satellite Communication CenterTakahagiZip: 318-0022Country: JapanWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:First_Transpacific_Reception_of_a_Television_%28TV%29_Signal_via_Satellite,_1963

On 23 November 1963, this site received the first transpacific transmission of a TV signal from Mojave earth station in California, U.S.A., via the Relay 1 communications satellite. The Ibaraki earth station used a 20m Cassegrain antenna, the first use of this type of antenna for commercial telecommunications. This event demonstrated the capability and impact of satellite communications and helped open a new era of intercontinental live TV programming relayed via satellite.

YearAdded:
2009
Image Caption: Artist's vision of NASA Relay 1 satelliteEra_date_from: 1963
First Transatlantic Reception of a Television Signal via Satellite
Society: IEEEMain Category: ElectricEra: 1960-1969DateCreated: 1962Parc du Radôme
Pleumeur-BodouCountry: FranceWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:First_Transatlantic_Reception_of_a_Television_Signal_via_Satellite,_1962

On 11 July 1962 a station in Pimsleur-Bodou received the first transatlantic transmission of a TV signal from a twin station in Andover, Maine, USA via the TELSTAR satellite. The success of TELSTAR and the earth stations, the first built for active satellite communications, illustrated the potential of a future world-wide satellite system to provide communications between continents.

YearAdded:
2002
Image Credit: Courtesy Flickr/Nicholas Lannuzel (CC BY-SA 2.0)Image Caption: The Radome in Pimsleur-Bodou.Era_date_from: 1962
Satellite
Society: IEEEMain Category: ElectricEra: 1980-1989DateCreated: 1984NHK Science and Technology Research LaboratoriesTokyoCountry: JapanWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:First_Direct_Broadcast_Satellite_Service,_1984Creator: NHK (Japan Broadcasting Corporation)

NHK began the world's first direct broadcast satellite service in May, 1984. This was the culmination of eighteen years of research that included the development of an inexpensive low-noise receiver and investigations of rain attenuation in the 12 GHz band. RRL, NASDA, TSCJ, Toshiba Corporation, General Electric Company, and NASA participated with NHK to make satellite broadcasting to the home a practical reality.

YearAdded:
2011
Image Credit: Courtesy Wikicommons/Makro Freak (CC BY-SA 2.5)Image Caption: A modern parabolic satellite communications antenna at Erdfunkstelle RaistingEra_date_from: 1984
Electronic Technology for Space Rocket Launches
Society: IEEEMain Category: ElectricEra: 1950-1959DateCreated: 1950-1969Kennedy Space CenterBrevard CountyState: FLZip: 32899Country: USAWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:Electronic_Technology_for_Space_Rocket_Launches,_1950-1969

The demonstrated success in space flight is the result of electronic technology developed at Cape Canaveral, the J. F. Kennedy Space Center, and other sites. A wide variety of advances in radar tracking, data telemetry, instrumentation, space-to-ground communications, on-board guidance, and real-time computation were employed to support the U.S. space program. These and other electronic developments provided infrastructure necessary for the successful landing of men on the moon in July 1969 and their safe return to earth.

YearAdded:
2001
Image Credit: Courtesy Wikipedia/NASAImage Caption: A culmination of research in radar tracking, data telemetry, instrumentation, space-to-ground communications, on-board guidance, and real-time computation: the 1969 moon landing.Era_date_from: 1950
RL-10 Rocket Engine
Society: ASMEMain Category: Aerospace & AviationSub Category: AerospaceEra: 1950-1959DateCreated: 1958Smithsonian National Air and Space MuseumWashingtonState: DCZip: 20560Country: USAWebsite: http://www.asme.org/about-asme/history/landmarks/topics-a-l/air-and-space-transportation/-36-rl-10-rocket-engine-%281958%29, https://www.asme.org/getmedia/e04882e6-5b54-404f-b634-f7e4d4494067/36-RL-10-Rocket-Engine.aspxCreator: Pratt & Whitney

The RL-10, which served as the power plant for NASA's upper-stage Centaur space launch vehicle, was the first rocket engine to use high-energy liquid hydrogen as a fuel. It has provided precisely controlled, reliable power for lunar and planetary explorations. The RL-10 embodied numerous advanced design features, including multiple use of its fuel with the "bootstrap cycle." The RL-10 is also capable of multiple restarts in space, which enables positioning of satellites or further escape of Earth's gravity.

YearAdded:
1979
Image Credit: Public Domain (NASA)Image Caption: The first rocket engine to use high-energy liquid hydrogen as fuel.Era_date_from: 1958
Society: IEEEMain Category: ElectricalSub Category: CommunicationsEra: 1960-1969DateCreated: 1962Shirley's Bay Research CentreOttawaState: OntarioZip: K2KCountry: CanadaWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:Alouette-ISIS_Satellite_Program,_1962Creator: Defense Telecommunications Establishment Electronics Lab
"Driven by the need to understand the characteristics of radio communication in Canada's North, Canadian researchers focused on the exploration of the earth's upper atmosphere, the ionosphere. Canada's satellite program commenced with the launch of Alouette-I on September 29, 1962. Alouette-II followed in 1965, ISIS-I in 1969, ISIS-II in 1971. The Alouette/ISIS tracking antenna serves as a reminder of Canada's contribution to this international effort in space science.
YearAdded:
1993
Image Credit: Public Domain; NASAImage Caption: The The Alouette 1, the very first satellite constructed by CanadaEra_date_from: 1962
Subscribe to Satellite

We hope you enjoyed this essay.

Please support this 70-year tradition of trusted historical writing and the volunteers that sustain it with a donation to American Heritage.

Donate

Stay informed - subscribe to our newsletter.
The subscriber's email address.