Skip to main content

Space

Electronic Technology for Space Rocket Launches
Society: IEEEMain Category: ElectricEra: 1950-1959DateCreated: 1950-1969Kennedy Space CenterBrevard CountyState: FLZip: 32899Country: USAWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:Electronic_Technology_for_Space_Rocket_Launches,_1950-1969

The demonstrated success in space flight is the result of electronic technology developed at Cape Canaveral, the J. F. Kennedy Space Center, and other sites. A wide variety of advances in radar tracking, data telemetry, instrumentation, space-to-ground communications, on-board guidance, and real-time computation were employed to support the U.S. space program. These and other electronic developments provided infrastructure necessary for the successful landing of men on the moon in July 1969 and their safe return to earth.

YearAdded:
2001
Image Credit: Courtesy Wikipedia/NASAImage Caption: A culmination of research in radar tracking, data telemetry, instrumentation, space-to-ground communications, on-board guidance, and real-time computation: the 1969 moon landing.Era_date_from: 1950
Society: ASMEMain Category: MechanicalSub Category: Air and Space TransportationEra: 1960-1969DateCreated: 1964Marshall Space Flight CenterHuntsvilleState: ALZip: 35808Country: USAWebsite: http://www.asme.org/about-asme/history/landmarks/topics-a-l/air-and-space-transportation/-170-advanced-engine-test-facility-at-marshall-%2819Creator: von Braun, Wernher
The Advanced Engine Test Facility was built in 1964, three years after President John F. Kennedy committed the United States to world leadership in aeronautical science. Conceived and designed by Wernher von Braun, the first director of the Marshall Space Flight Center, this facility was used to perform static tests on the booster of the Saturn V rocket, which launched Apollo 11 to the moon on July 16, 1969. The stand has four concrete legs, each four feet thick and rising 144 feet to a steel superstructure supporting a 200-ton crane.
YearAdded:
1993
Image Credit: Courtesy ASMEImage Caption: Saturn V Rocket being lifted onto the A-2 Test Stand at NASA's John C. Stennis Space CenterEra_date_from: 1964
Society: ASMEMain Category: MechanicalSub Category: Air and Space TransportationEra: 1950-1959DateCreated: 1957Gillespie Fields AirportEl CajonState: CAZip: 92020Country: USAWebsite: http://www.asme.org/about-asme/history/landmarks/topics-a-l/air-and-space-transportation/-102-atlas-launch-vehicle-%281957%29Creator: Convair Division of General Dynamics, U.S. Air Force
The Atlas E-2 Space Booster, or launch vehicle, is a modified intercontinental ballistic missile developed by the Convair Division of General Dynamics and the U.S. Air Force. The basic concept of the Atlas system was proven in its first flight on June 11, 1957, followed over the years by the launching more than five hundred vehicles including the Pioneer, Ranger, Mariner, and Surveyor. Many payloads were sent into orbit as detachable sections of Atlas missiles.
YearAdded:
1985
Image Credit: All 3 images are Public DomainImage Caption: A compilation of three successful launches vehicles in action. On the left is the Atlas-Centaur, the center is the Atlas-Agena, and the right is the SM-65A Atlas missile.Era_date_from: 1957
Society: ASMEMain Category: MechanicalSub Category: Air and Space TransportationEra: 1960-1969DateCreated: 1968Saturn V Center

6225 Vectorspace Blvd
TitusvilleState: FLZip: 32780Country: USAWebsite: http://www.asme.org/about-asme/history/landmarks/topics-a-l/air-and-space-transportation/-162-apollo-space-command-module-%281968%29, http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo14info.htmlCreator: North American Aviation
The Apollo was the vehicle that first transported humans to the moon and safely back to earth. Nine lunar flights were made between 1968 and 1972. The command module, built by North American Aviation (at the time of launch, North American Rockwell Corporation), accommodated three astronauts during the mission. It was the only portion of the Apollo spacecraft system designed to withstand the intense heat of atmospheric re-entry at 25,000 mph and complete the mission intact. This command module at Rockwell flew as Apollo 14 in 1971.
YearAdded:
1992
Image Credit: Courtesy Flickr/Chad Nordstrom (CC BY 2.0) Image Caption: The real Apollo Space Command Module on display at the Kennedy Space Center's Saturn V Building.Era_date_from: 1968
Society: ASMEMain Category: MechanicalSub Category: Air and Space TransportationEra: 1970-1979DateCreated: 1972Cradle of Aviation MuseumEast Garden CityState: NYZip: 11530Country: USAWebsite: http://www.asme.org/about-asme/history/landmarks/topics-a-l/air-and-space-transportation/-218-apollo-lunar-module-lm-13-%281972%29Creator: Grumman Aircraft Engineering Corp
The Apollo lunar module (LM-13) was developed by the Grumman Aircraft Engineering Corp. (now Northrop Grumman). The LM's main functions were to carry two astronauts from lunar orbit to the moon's surface, and then return them to lunar orbit to rendezvous and dock with the Apollo command-service modules. On the surface, the LM served as a shelter and base of operations as the astronauts carried out their exploration and experiments. On July 20, 1969, the LM "Eagle" touched down on the moon, becoming the first piloted spacecraft to land on a celestial body other than Earth.
YearAdded:
2002
Image Credit: Courtesy Flickr/Michael Gray (CC BY-SA 2.0) Image Caption: The Apollo Lunar Module LM-13 on display in the Cradle of Aviation Museum Era_date_from: 1972
Society: IEEEMain Category: ElectricalSub Category: CommunicationsEra: 1960-1969DateCreated: 1962Shirley's Bay Research CentreOttawaState: OntarioZip: K2KCountry: CanadaWebsite: http://www.ieeeghn.org/wiki/index.php/Milestones:Alouette-ISIS_Satellite_Program,_1962Creator: Defense Telecommunications Establishment Electronics Lab
"Driven by the need to understand the characteristics of radio communication in Canada's North, Canadian researchers focused on the exploration of the earth's upper atmosphere, the ionosphere. Canada's satellite program commenced with the launch of Alouette-I on September 29, 1962. Alouette-II followed in 1965, ISIS-I in 1969, ISIS-II in 1971. The Alouette/ISIS tracking antenna serves as a reminder of Canada's contribution to this international effort in space science.
YearAdded:
1993
Image Credit: Public Domain; NASAImage Caption: The The Alouette 1, the very first satellite constructed by CanadaEra_date_from: 1962
Subscribe to Space

We hope you enjoyed this essay.

Please support this 70-year tradition of trusted historical writing and the volunteers that sustain it with a donation to American Heritage.

Donate

Stay informed - subscribe to our newsletter.
The subscriber's email address.